
Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s)
Ruqaya Jabir Hadi, Department of Physics, College of Science, Kufa Univ., Kufa, Iraq
Ali Abid Abojassim, Department of Physics, College of Science, Kufa Univ., Kufa, Iraq
Laith Najam, Department of Physics, College of Science, Mosul Univ., Mosul, Iraq
Ali Abid Abojassim, Department of Physics, College of Science, Kufa Univ., Kufa, Iraq
Laith Najam, Department of Physics, College of Science, Mosul Univ., Mosul, Iraq
Received: Apr. 9, 2016;
Accepted: Jun. 3, 2016;
Published: Jun. 17, 2016
DOI: 10.11648/j.ajme.20160201.11 View 2941 Downloads 71
Abstract
Some radial atomic properties of Be-atom in different excited states (1s2 2s 3s, 1s2 2s 4s, 1s2 2s 5s) (1s) have been obtained using two electron density function
(r1,r2) in order to solve Hartree-Fock equations using slater type orbitals using partitioning technique within the individual electronic shells of different configuration of Be-atom in position space. Radial expectations values for one electron
and two electrons
, correlation coefficients
, electron density at the nucleus
, the nuclear magnetic shielding constant
and The diamagnetic susceptibility
have been calculated for these states of the same atom.







Keywords
Hartree-Fock-Roothaan Method, Slater Type Orbitals, Two Electron Density Function, Radial Expectation Values, The Nuclear Magnetic Shielding Constant
To cite this article
Ruqaya Jabir Hadi,
Ali Abid Abojassim,
Laith Najam,
Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s), American Journal of Modern Energy.
Vol. 2, No. 1,
2016, pp. 1-4.
doi: 10.11648/j.ajme.20160201.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
T. Koga and Y. Kawata, J. Chemical Physics, Vol. 117, No. 20, 9133-9137 (2002).
[2]
T. Koga and H. Matsuyama, J. Chemical Physics, Vol. 120, No. 17, 7831- 7836 (2004).
[3]
S. Goedecker and C. J. Umrigar, J. Physical Review Letters, Vol. 81, No. 4(1998) 866-868.
[4]
M. Fukuda and K. Fujisawa, arXiv: 1010.4095, Vol. 2 (2011).
[5]
K. E. Banyard and R. J. Mobbs, J. Chemical Physics, Vol. 75, No. 7 (1981) 3433-3442
[6]
T. Koga and Y. Kawata, J. Chemical Physics, Vol. 117, No. 20 (2002) 9133-9137.
[7]
C.Chen, J. The European Physical D, Vol.56, 303-309 (2010).
[8]
T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol.115, 59–64 (2006).
[9]
H. Matsuyama and T. Koga, J. Computational And Applied Mathematics, Vol.233, 1584-1589 (2010).
[10]
T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol. 118, 931–935(2007).
[11]
K. H. ALBayati, Ph. D, Thesis Leicester University, England (1986).
[12]
K. J. AL-Khafaji and A. F. Salman, J. Kufa Physics, Vol.4, No.1 (2012).
[13]
V. B. Mushkin and R. M. Aminova, J. Molecular Structure (Theochem),Vol.572 (2001) 185-191.
[14]
R. H. Romero, S. S. Gomez, J. Physics Letters A, Vol. 353 (2006) 190–193.
[15]
J. Penuelas, J. Liusia, B. Martınez, and J. Fontcuberta, J. Electromagnetic Biology And Medicine, Vol. 23, No. 2(2004) 97–112.
[16]
T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol. 115(2006) 59–64.
[17]
F. W. King and R. Dressel, J. Chem. Phys. Vol, 6449(1989).
[18]
K. E. Banyard and R. J. Mobb J. Chem. Phys. Vol. 75, No.7 (1981).
[19]
F. J. Galvez, E. Buendia and A.Sarsa J. Chem. Phys. Vol. 118, No. 15 (2003).