Automatic Load Sharing and Control System Using a Microcontroller
Musa Baba Lawan,
Yau Alhaji Samaila,
Ibrahim Tijjani
Issue:
Volume 3, Issue 1, February 2017
Pages:
1-9
Received:
28 September 2016
Accepted:
29 October 2016
Published:
18 April 2017
Abstract: Power failure is a short or long term loss of electric power to an area mostly cost cause by short circuit, damage to electric transmission line, overvoltage, faults at power stations and more commonly failure due to overloading. The possible damage areas are affected by losing power. The one inherent problem with standard power sharing and monitoring units is their broadcast strength. Since you have to be physically close to the alarm to hear it, you might not get notified in time to actually prevent overload. The microcontroller based load sharing and control system is a device that automatically controls overload on a generator by sharing power and cut off supply once the power consumption exceeds the amount of power supplied. The control system for controlling the AC loads will be selected within a power range of 500W. This is achieved by using a microcontroller PIC16F877A to automatically detect an overload and subsequently cut off supply. The method used in the project provides necessary stages from overload detection to switching/cutting off supply. The main aim of the work is to provide a non-interrupted power supply to the energy consumers. By implementation of this scheme the problem of interruption of supply due to generator overloading can be avoided. The work was fairly successful and there liability level expected is commendable as this may also create room for improvement. The project was tested and observed that it cut off supply as soon as the microcontroller senses an overload on the system by the user.
Abstract: Power failure is a short or long term loss of electric power to an area mostly cost cause by short circuit, damage to electric transmission line, overvoltage, faults at power stations and more commonly failure due to overloading. The possible damage areas are affected by losing power. The one inherent problem with standard power sharing and monitor...
Show More
Thermal Stabilization Based Investigations over Quenching Media for Spindle in CNC Machining Centers
Kuldeep Verma,
Rajendra M. Belokar
Issue:
Volume 3, Issue 1, February 2017
Pages:
10-16
Received:
27 March 2017
Accepted:
12 April 2017
Published:
8 May 2017
Abstract: The thermal expansion in spindles of computer numeric control (CNC) machines is widespread phenomenon around the world. Thermal change affects the positioning accuracy, repeatability, run out and backlash of the entire machining center. This thermal change in spindle is related with factors like speed and heat. The heat generated during running and machining of work-piece generates considerable amount of heat. This heat further elongates spindle and reduce the performance of spindle and degrade entire efficiency of system. In order to enhance the performance, it is mandatory to dissipate heat at much faster rate than heat generated during machine running and machining. In this paper, thermal equilibrium of spindle front bearing (that is at the nose of spindle) is stabilized up to maximum extent i.e. near to the negligible level. Initially, the spindle stabilized with continuous running at different speed and quenching of spindle by rotating hydraulic oil that will be quenched naturally around the periphery of spindle. Next, hydraulic oil is used for quenching by the circulation of water around the oil reservoir. This removes heat at faster rate. After stabilization of spindle, its impact on the horizontal, vertical and axial plane has been investigated. Finally, analytical investigations have been carried out to prove the validity of spindle stabilization process.
Abstract: The thermal expansion in spindles of computer numeric control (CNC) machines is widespread phenomenon around the world. Thermal change affects the positioning accuracy, repeatability, run out and backlash of the entire machining center. This thermal change in spindle is related with factors like speed and heat. The heat generated during running and...
Show More